it. J. Heat Mass Transfer. Vol. 26, No. 2, p. 319, 1983 ergamon Press Ltd. Printed in Great Britain

ERRATA

W. Bjorge, G. R. Hall and W. M. Rohsenow, Correlation of sreed convection boiling heat transfer data, *Int. J. Heat Mass ransfer* 25, 753–757 (1982).

Equation (14a) should read

$$\Delta T_{\rm sat,ib} = \frac{1}{1-N} \left(\frac{1}{4\Gamma N} + N \Delta T_{\rm sc} \right).$$

Ganeshan and M. Raja Rao, Studies on thermohydraulics of ingle- and multi-start spirally corrugated tubes for water nd—time independent power law fluids, *Int. J. Heat Mass ransfer* 25, 1013–1022 (1982).

The sentence after equation (10) should read 'For these ilute aqueous polymer solutions, ρ , C_p and k were found to be he same as those of water within 1–2%'.

Equations (19) should be

$$Pr_{gen} = (C_p K'/k)(8V/D)^{n'-1},$$

$$Pr_d = (C_p K'/k)(8V/D)^{n'-1} [4n'^2/(3n'+1)].$$

In the first paragraph under the heading Friction correlation 5. 1018) the second sentence should be replaced by the ollowing:

Although tubes 1–4 are essentially geometrically similar 1/h = 39-56, their groove width varies from 2.81 to 5.85 mm, ue to which the data are vertically displaced for these tubes. (h^+) values are relatively higher for the least rough tubes 6 nd 2, and are the lowest for the rougher tube 7. Equation (20) though the based

Equation (20) should read

$$h^{+} = 0.629 \exp\{3.66 R(h^{+})[h/(p-w)]^{0.52} N^{0.25}(n')^{2.5}\}.$$

In the running-heads and in ref. [20] for 'thermodynamics' read 'thermohydraulics'.

G. Ronald Hadley, Theoretical treatment of evaporation front drying, Int. J. Heat Mass Transfer 25, 1511–1522 (1982). Equation (9) should read

$$\frac{n_1 J_2' - n_2 J_1'}{n^2 D_{12}} = \frac{\partial}{\partial z} \left(\frac{p_1}{p}\right) + \left(\frac{p_1}{p} - \frac{n_1 m_1}{\rho}\right) \frac{\partial \ln p}{\partial z}$$
$$- \frac{n_1 m_1}{p \rho} \left(\frac{\rho}{m_1} X_1' - n_1 X_1' - n_2 X_2'\right)$$

Equation (15) should read

$$\frac{n_1 J_2' - n_2 J_1'}{n^2 D_{12}} = \frac{1}{p} \frac{\partial p_1}{\partial z} + \frac{kT}{p D_{1\kappa}} J_1'$$
$$- \frac{n_1 m_1}{p \rho} \left[\frac{\partial p}{\partial z} - n_1 X_1' - n_2 X_2' \right].$$

Equations (16)-(18) should read

$$J'_{1} = -\frac{D_{1K}}{kT}\frac{\partial p_{1}}{\partial z} + \frac{D_{1K}}{nD_{12}}(n_{1}J'_{2} - n_{2}J'_{1}).$$
(16)

$$J_{1} = -\frac{D_{1K}}{kT} \frac{\partial p_{1}}{\partial z} - \frac{n_{1}R^{2}}{8\mu} \frac{\partial p}{\partial z} + \frac{D_{1K}}{nD_{12}} (n_{1}J_{2} - n_{2}J_{1}).$$
(17)

$$J_{2} = -\frac{D_{2K}}{kT}\frac{\partial p_{2}}{\partial z} - \frac{n_{2}R^{2}}{8\mu}\frac{\partial p}{\partial z} + \frac{D_{2K}}{nD_{12}}(n_{2}J_{1} - n_{1}J_{2}).$$
(18)